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In contrast to most self-assembling synthetic materials, which undergo unbounded growth, many
biological self-assembly processes are self-limited. That is, the assembled structures have one or
more finite dimensions that are much larger than the size scale of the individual monomers. In
many such cases, the finite dimension is selected by a preferred curvature of the monomers, which
leads to self-closure of the assembly. In this article, we study an example class of self-closing
assemblies: cylindrical tubules that assemble from triangular monomers. By combining kinetic
Monte Carlo simulations, free energy calculations, and simple theoretical models, we show that a
range of programmable size scales can be targeted by controlling the intricate balance between the
preferred curvature of the monomers and their interaction strengths. However, their assembly is
kinetically controlled — the tubule morphology is essentially fixed shortly after closure, resulting in
a distribution of tubule widths that is significantly broader than the equilibrium distribution. We
develop a simple kinetic model based on this observation and the underlying free-energy landscape
of assembling tubules that quantitatively describes the distributions. Our results are consistent with
recent experimental observations of tubule assembly from triangular DNA origami monomers. The
modeling framework elucidates design principles for assembling self-limited structures from synthetic
components, such as artificial microtubules that have a desired width and chirality.

I. INTRODUCTION

Many biological functions rely upon the assembly of
self-limited structures that have well-defined finite sizes,
and yet are much larger than the size of the individ-
ual building blocks. Examples include the assembly of
protein capsomers into viral shells with the appropri-
ate size to encapsulate the viral nucleic acid, assembly
of tubulin into microtubules with diameters that confer
sufficient rigidity to mechanically support the cell [1, 2],
and, within butterfly wings, the organization of chitin
into nanostructured domains on the scale of visible light
to make the tissue iridescent [3, 4]. In contrast, most
structures assembled from synthetic building blocks un-
dergo unlimited growth into crystals or amorphous mate-
rials [5–7]. The biological structures described above are
examples of ‘curvature-controlled’ assemblies, in which
the building blocks assemble with a preferred curvature
that leads the structure to close upon itself in one or more
directions.

There has been an intense interest in mimicking such
functional biological structures by developing synthetic
building blocks that can be pre-programmed to assemble
with curvatures leading to self-closure. To this end, re-
searchers have recently used DNA origami (e.g. [8, 9]) and
protein design (e.g. [10–12]) to engineer building blocks
that assemble into polyhedral capsids or tubules with de-
signed diameters. However, due to thermal fluctuations
and kinetic effects, assembled structures typically exhibit
polymorphism in the limited dimension rather than a sin-
gle well-defined diameter [13–15]. Understanding the
factors that control this size distribution is essential for
achieving functional self-limited assemblies. In this ar-
ticle, we use computer simulations and kinetic models
to understand the dynamical pathways of helical tubule

assembly, and the resulting polymorphic distribution of
assembled tubule structures.

Curvature-controlled assemblies in biology frequently
rely on symmetry principles to maximize their ‘econ-
omy’ of assembly, meaning the size of the structure that
can be assembled for a given number of distinct subunit
species [15]. For example, icosahedral symmetry max-
imizes the number of identical subunits (60) that can
be used to assemble a shell, and many viruses assemble
icosahedral capsids [16–19]. In this sense, helical tubules
are even simpler than icosahedral capsids — there is an
infinite family of helical tubules with different diameters
and pitches, each of which can be assembled from a sin-
gle subunit species with identical conformations through-
out the structure. However, because the subunit curva-
ture changes only slightly between different tubule struc-
tures with similar geometries within this family, tubule
assembly is highly susceptible to polymorphism. That is,
when subunits associate with imperfect geometries dur-
ing assembly, and these imperfections fail to anneal be-
fore becoming trapped by further subunit association, the
resulting assembled structures deviate from the ground
state tubule structure. Consequently, the geometry dis-
tribution of tubules assembled in a finite time depends
on a competition between kinetic and thermodynamic
factors, and can differ significantly from the equilibrium
distribution. Identifying these factors from experiments
alone is challenging because most intermediate structures
are transient and present at concentrations which are too
low to experimentally detect or characterize.

Computer simulations can help to understand self-
limited size distributions by revealing the dynamical
pathways leading to assembly. However, in compari-
son to the extensive body of theoretical and computa-
tional modeling of icosahedral capsids or shells (e.g. [20]),
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there has been relatively limited study of tubule assembly
(e.g. [21–29]). Thus, the mechanisms controlling tubule
assembly and closure have yet to be completely explored.

In this article, we perform kinetic Monte Carlo simu-
lations on a model of triangular subunits motivated by
recent experiments demonstrating the assembly of DNA
origami building blocks into helical tubules [9]. By com-
paring the distribution of dynamically assembled tubules
with equilibrium results, we find that the size and mor-
phology distribution is kinetically controlled. In par-
ticular, the structural ensemble is typically quenched
shortly after a nascent assemblage first closes upon it-
self to form a cylindrical tubule. Through a combination
of dynamical simulations, free-energy calculations, and
simple analytical models, we determine how the result-
ing size distribution depends on control parameters such
as the bending modulus and the pre-programmed tar-
get curvature. These results may guide the experimental
design of more efficient and accurate self-assembling ar-
tificial tubule structures.

The remainder of the article is organized as follows:
In section IIA–B, we introduce the kinetic Monte Carlo
simulation that we use to model tubule self-assembly.
We then discuss the predicted assembly trajectories and
geometry distribution of assembled tubules. In section
II C, we compare simulation outcomes to observations
from experiments on tubules self-assembled from DNA
origami subunits, and obtain an estimate of the bending
rigidity in the experimental system. In section IIIA–C,
we present calculations of the equilibrium tubule geome-
try distribution and, through comparison with simulation
results, show that the assembled geometry distribution is
kinetically controlled. In section IIID–E, we construct
a kinetic model that captures these kinetic effects, and
use it to predict the assembly behavior as a function of
the control parameters. Finally, in section IV, we discuss
implications for future experiments, as well as limitations
and possible extensions of the model.

II. SIMULATIONS

A. Computational model

In our model, each triangular monomer is composed of
three vertices connected by harmonic bonds. The Hamil-
tonian is

H =
∑

i∈Bound Edge Pairs

−EB +
1

2
B(θi − θ0,i)2

+
∑

j∈Edges

1

2
kS(lj − l0,j)2,

(1)

with EB as the monomer-monomer binding energy (set as
a positive constant); θi and θ0,i as the instantaneous and
preferred dihedral angle between two monomers bound at
a common edge i, B as the bending modulus; lj and l0,j
as respectively the instantaneous and stress-free lengths

of an edge j; and kS as the stretching modulus. The
three monomer edges are inequivalent, and setting θ0 at
each of the monomer edges defines the ground state (tar-
get) tubule geometry (Fig. §1). For simplicity, we set
EB and l0 to be identical among all three edges of a
monomer, and we consider only a single monomer species.
Moreover, motivated by the material properties of DNA
origami subunits and proteins, we focus here on the limit
of thin sheets, in which the bending deformations are
much lower in energy than stretching. Therefore, we
set kS = 200 kBT/l

2
0 throughout this study so that the

monomer edges are nearly fixed in length, and we vary
the bending modulus as a control parameter (Fig. 1).

We use Monte Carlo moves to relax the structure, in-
cluding vertex moves to relax structural degrees of free-
dom, monomer association and dissociation moves to
model assembly and disassembly, as well as moves to
model internal rearrangement events such as the splitting
and merging of cracks within a structure. All the moves
guarantee detailed balance (see SI Section VIII and IX
for details about the algorithm and the moves). Provided
that this set of movements represents the transitions that
are relevant for actual tubule assembly, with approxi-
mately correct relative rates for the different moves, the
Monte Carlo trajectories can be qualitatively mapped
onto the system dynamics. This mapping can be tested
by comparing simulation results against experimental ob-
servations of tubule assembly kinetics and the structural
ensemble of assembled tubules. The edge fusion and fis-
sion moves, which respectively bind two free edges on the
structure boundary or split two edges that are already
bound, are particularly important for closure/reopening
of the tubule structure. We show below that the rate
of tubule closure relative to its growth can significantly
affect the assembly pathways. Therefore, we define a con-
trol parameter – edge fusion rate ffusion, as the ratio be-
tween the attempt frequency of edge fusion/fission moves
and the unit timescale (which is set to the frequency of
vertex moves).

bendingbinding stretching

FIG. 1. Schematic of the model. The Hamiltonian includes
terms that represent edge stretching, monomer-monomer
binding, and bending. Each of the three monomer edges is
a different type, and only pairs of edges with the same type
can bind. In this work, all edge types have the same binding
energy. Each edge type i has a different preferred (‘ideal’)

dihedral angle, θ
(m,n)
id,i , the set of which determined the target

structure (m,n). The energetic cost of deviations from pre-
ferred edge lengths and the dihedral angles are controlled by
the stretching and bending moduli, kS and B.
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FIG. 2. Simulation trajectories showing the number of monomers N in a self-assembled structure as a function of elapsed
time τ (number of Monte Carlo sweeps). Snapshots show the configurations at indicated times. Dashed lines in the zoomed-
in snapshots label the direction of the edge that is the most perpendicular to longitudinal direction. The assembled tubule
geometries are: (9,1) for the red trajectory, (10,0) for the blue trajectory, and (4,0) for the yellow trajectory. The red and blue
trajectories have the same target tubule geometry of (10,0) and the same binding energy of EB = 6.0 kBT . The target tubule
geometry for the yellow trajectory is (5,0) and the binding energy is EB = 5.0 kBT . Other simulation parameters are the same
for all the trajectories: B = 20 kBT, ffusion = 10−3.

To model assembly from a dilute system of monomers,
for which binding between different tubules is negligible,
we consider a single assembling structure in each simu-
lation. In addition, we restrict association and dissoci-
ation to individual monomers, since assembly of larger
oligomers is rare under these conditions. To determine
well-defined steady-state distributions, we evolve the sys-
tem in the grand canonical ensemble, in which the as-
sembling structure exchanges monomers with a bath at
a fixed chemical potential µ. This situation approxi-
mately describes tubule distributions at a point in a re-
action with a corresponding free monomer concentration
c0 = cSS exp(µ/kBT ) with cSS the standard state concen-
tration. We set µ = −3 kBT throughout this study.

B. Simulation Results

Assembly trajectories. The Monte Carlo trajectories
exhibit a rich dynamics which proceeds through a se-
ries of stages, including nucleation, closure, and growth.
Fig. 2 shows snapshots from example simulation trajec-
tories at three different parameter sets. During assembly
with a large target tubule diameter (red and blue curves),
after an initial period of transient assembly and disassem-
bly, the structure surpasses the critical nucleus size (ap-
proximately 5 monomers for these conditions) and grows
steadily as a curved two-dimensional sheet. Eventually,
the boundary edges at opposite sides of the curling sheet
begin to touch, and the edges bind. We denote the first
such binding event as the point of tubule closure. Af-
ter closure, the tubule geometry is highly stable and the
structure undergoes steady growth from both ends.

Even though the red and blue trajectories have the
same target structure, they assemble different tubule
geometries, denoted by different pairs of integer num-

bers (m,n) based on the convention from carbon nan-
otubes [30]. Representing a tubule as a curled triangular
lattice that closes upon itself, the index m gives the num-
ber of lattice sites on one turn around the helix, while n
gives the number of lattice sites in the orthogonal direc-
tion (along the long axis of the tubule) (See Fig. §1 for a
schematic of the naming convention and SI section IA for
a detailed description of the notation). In the trajectory
with a small target width (yellow line), tubule closure
corresponds to the formation of the critical nucleus, af-
ter which the tubule undergoes steady growth.

Tubule geometry distributions. We performed simula-
tions over a wide range of parameter values to learn how
the tubule morphologies arising from dynamical trajec-
tories depend on the relevant physical parameters, such
as the bending modulus B, the diameter of the target
tubule geometry D0, and the fusion rate ffusion, which
influences the closure kinetics. We measured the distri-
bution of tubule geometries at the end of each simula-
tion. Simulations were performed until the length of the
structure L grew to approximately three times the tubule
circumference, since the geometry distribution is stable
by this point (no geometry fluctuations occur beyond this
size). We estimated the distributions from 1000 indepen-
dent trials at each parameter set.

We find that tubule structures with different geome-
tries, as well as structures that fail to close, can as-
semble in the dynamical simulations under the same set
of parameter values. We classify the self-assembly out-
comes into three categories: defect-free tubules, defec-
tive tubules, and open structures. A tubule is defective
if part of the structure fails to close or multiple tubule
geometries are locally identified within the same struc-
ture (see Fig. §3 and SI section IIIA for identification
details). The fraction of defective tubules increases as
the bending modulus B decreases and the target diam-
eter D0 increases. To avoid conditions under which de-
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FIG. 3. Tubule geometry distributions from Monte Carlo as-
sembly trajectories depend on the bending modulus B, target
tubule geometry, and fusion rate ffusion. The color and size of
each circle indicates the fraction of the corresponding tubule
geometry within the defect-free population. (A) Geometry
distributions for different B with EB = 6 kBT , ffusion = 10−3,
and target tubule geometry (10,0). The fraciton of defect-
free tubules is about 97% for both cases. (B) Geometry dis-
tributions for different target geometries with B = 20 kBT ,
EB = 6 kBT , and ffusion = 10−3. The fraction of defect-free
tubules is about 88% for both cases. (C) Geometry distribu-
tions for different ffusion with B = 20 kBT , EB = 6 kBT , and
target tubule geometry (10,0). As ffusion decreases from 10−2

to 10−4, the fraction of defect-free tubules decreases from 88%
to 52%, while the fraction of open structures increases from 0
to 45%. Each distribution in (A)-(C) is estimated from 1000
independent simulation trajectories.

fective structures are too prevalent, we set the binding
energy to 6 kBT and the monomer chemical potential to
µ = −3 kBT , so that assembly is sufficiently reversible to
allow monomer detachment and annealing [31–34]. With
these parameters, the fraction of defective tubes is gener-
ally below 30%. Open structures arise when nonuniform
curvature causes opposite boundary edges to ‘miss’ the
opportunity to bind to each other, leading to a spiral
structure that resembles a toilet paper roll (Fig. §3).

The geometry distributions of defect-free tubules de-

pend on the control parameters. Fig. 3 shows the distri-
butions of assembled tubules for different bending mod-
uli, target diameters, and fusion rates. The size and
color of the circular symbols represent the fraction of
different tubule geometries within the defect-free popu-
lation. Only tubule geometries with populations ≥ 1%
are labeled in the plot. Fig. 3(A) shows tubule geometry
distributions for two bending moduli B, with other pa-
rameters fixed. As B increases, the fraction of the target
tubule (10,0) increases while the fraction of the off-target
tubules decreases. This is consistent with thermodynam-
ics, since the deviations of dihedral angles required for off-
target geometries increase in energy with B. Fig. 3(B)
compares the distributions for two different target ge-
ometries. As the diameter of the target geometry D0

increases, the fraction of the target geometry decreases
while the fraction and variety of observed off-target ge-
ometries increases. This result is also consistent with
thermodynamics, since the difference of the ideal dihedral
angles between the target state and neighboring tubule
geometries is smaller for larger D0 (Fig. §2). Therefore,
with the same extent of dihedral angle fluctuation, the
number of accessible off-target states increases as D0 in-
creases. Similar results were described in Ref. [35].

Interestingly, even for the same Hamiltonian (in which
B and D0 are fixed), changing the edge fusion rate ffusion
changes the skew of the geometry distribution. Fig. 3(C)
shows that as ffusion increases from 10−4 to 10−2, the ge-
ometry distribution changes from skewing above to skew-
ing below the target geometry (10,0). Meanwhile, the
proportion of open structures increases from 0 to around
45% as ffusion decreases from 10−2 to 10−4 (Fig. §7).
This observation reflects the fact that decreasing the clo-
sure rate increases the chance that the two edges ‘miss’
each other. As the two edges grow past one another,
the size of a curvature fluctuation required to enable clo-
sure becomes increasingly unfavorable energetically, and
thus more rare. The continued growth of the structure
boundary then leads to the spiraling structure described
above.

C. Comparison of simulations and experiments

We now compare the results of our dynamical assem-
bly simulations to recent experiments that motivate our
work. We find that the morphology distribution of sim-
ulated tubules semi-quantitatively agrees with those ob-
served in the experiments [9], suggesting that the model
incorporates the essential physics of the experiments.

Hayakawa et al. [9] designed triangular monomers
from DNA origami that self-assemble into helical tubules
(Fig. 4). The monomers interact with each other along
their edges through shape-complementary interactions
driven by blunt-end DNA base stacking [8]. The inter-
actions are specific — each monomer edge interacts only
with the same edge type on a neighboring subunit. The
bevel angles of the edges of each monomer {θ0id,i} deter-
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FIG. 4. Comparing the geometry distributions of tubules as-
sembled in simulations and experiments. (A) Cryogenic elec-
tron microscopy reconstructions of a DNA origami monomer,
and a transmission electron microscopy image of an assembled
tubule. The left panel shows the monomer under different
views. Two monomers bind along their edges through shape-
complementary interactions driven by blunt-end DNA base
stacking. The right panel shows an assembled (9,4) tubule.
Images in (A) were provided by authors of Ref. [9]. (B)
Tubule geometry distributions measured from experiments [9]
and simulations. The size of each circle indicates the fraction
of the corresponding tubule geometry within the defect-free
population. Each simulation data point is estimated from
1000 independent simulation trajectories. (C) Comparing
tubule width distributions between experiments (blue bars)
and simulations (red symbols). D0 is the diameter of the ideal
(9,4) tubule. Simulation parameters: the target geometry is
(9,4), EB = 6.0 kBT , B = 10 kBT , and ffusion = 10−3.

mine the preferred dihedral angles, which, in turn, set
the preferred curvatures of the assembly.

The data set against which we compare our simulation
results is obtained from an experimental system that re-
sulted in a most probable tubule geometry of (9,4). Since
a key unknown parameter from the experiments is the
bending modulus B, we performed simulations with a
target geometry of (9, 4) at four values of the bending
modulus: B ∈ {5, 10, 15, 20} kBT . All other parameters
were fixed to their default values (see section II). We

found that assembled structures were highly defective for
B = 5 kBT . For B ≥ 10 kBT the majority of tubules were
well-formed, with distributions peaked around the target
geometry of (9,4). The width of the distribution becomes
progressively narrower with increasing B, as described in
section II B.

We found that a value of B = 10 kBT resulted in a
geometry distribution of assembled tubules that closely
resembles the distribution observed in the experiments
(Fig. 4(B)). To facilitate comparison between the two dis-
tributions, Fig. 4(C) plots the fraction of different tubule
geometries against the diameter of the tubules, where
D0 is the diameter of the (9,4) tubule geometry. Al-
though the simulation distribution is slightly narrower
than the experiment, we observe that the distributions
match fairly closely, especially considering that we have
not quantitatively optimized B. Results for the other
simulated values of B are shown in SI Fig. §10.

The comparison between simulations and experimen-
tal results in Fig. 4(B) and SI Fig. §10 suggests sev-
eral important qualitative conclusions: (1) the simple
model considered here produces results which are semi-
quantitatively consistent with those observed in the ex-
periments. As we will show below, these results can only
be explained through a combination of kinetic and ther-
modynamic effects, which suggests that the highly sim-
plified dynamics of our model captures the most relevant
physics. (2) It was not possible to directly estimate the
bending modulus within the experiments. The simula-
tion results suggest a bending modulus on the order of
10 kBT , which is comparable to that of a lipid bilayer
membrane (B/kBT ∼ 10 − 20) [36, 37]. This computa-
tional result could be tested in future experiments that
measure the distribution of angular fluctuations between
monomers. (3) Given the qualitative agreement between
the computational and experimental results, the simu-
lations can provide a predictive guide for future experi-
ments. We note that a definitive comparison of our sim-
ulation results to the experiments, and a precise estimate
of the experimental bending modulus, will require addi-
tional experimental data sets. In the subsequent sections,
we use the simulations and simple models to understand
the effect of relevant control parameters on the morphol-
ogy distributions of assembled tubules.

III. THEORETICAL MODELS

To determine whether kinetic effects influence the ob-
served geometry distributions, we compute the equi-
librium tubule geometry distribution and compare it
against those observed in simulations. We first perform
the calculation accounting for the discrete tubule geome-
tries allowed by the finite monomer size, and then we
simplify the calculation by adopting the continuum limit.
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A. Discrete equilibrium model

Motivated by the high rigidity of DNA origami sub-
units [8, 9], we focus on the regime of high stretching
modulus in this work, so that the relative edge length
fluctuations are small, kBT/kSl

2
0 � 1. Thus, in the fol-

lowing calculation we assume that the curvature within a
tubule is uniform, and for an assembled geometry (m,n)
all the dihedral angles are approximately equal to their

ideal value θ
(m,n)
id,i , with i ∈ 1, 2, 3 as the indices of the

three sides of a subunit. We denote the ideal angles
for the target geometry as θ0id,i. The free energy per

monomer g
(m,n)
L in a tubule geometry (m,n) with length

L is then approximately given by

g
(m,n)
L =

2a0γ

L
−
(

3EB

2
+ Ts

)
+

1

4
B
∑

i=1,2,3

(θ
(m,n)
id,i − θ0id,i)2

(2)

in which a0 is the area of a monomer, γ is the line tension
accounting for unsatisfied interactions at the two tubule
boundaries, EB is the binding energy, B is the bending
modulus, T is the temperature, and s is the per-monomer
entropy. The equilibrium probability P (m,n) to assemble
the tubule geometry (m,n) with length L is given by

P
(m,n)
L ∝ exp

[
−βN(g

(m,n)
L − µ)

]
, (3)

where N is the number of monomers in the structure and
µ is the chemical potential. In the grand canonical en-
semble µ is equal to the bath chemical potential, while
in the canonical ensemble (conserved total monomer con-
centration) µ = kBT ln (c0/cSS) with c0 the concentration
of free monomers.

We consider the large L limit, in which the contribu-
tion from the line tension can be ignored, so the free
energy per monomer becomes independent of length and
will be denoted as g(m,n). Further, at equilibrium, the
free energy per monomer of the geometry that mini-
mizes the free energy (in this case the target geome-
try) is approximately equal to the chemical potential
µ [15][38]. Since the bending energy of the target geom-
etry is zero, the equilibrium chemical potential is given
by µeq . −( 3EB

2 + Ts∗), where s∗ is the entropy per
monomer of the target structure. Assuming the entropy
is roughly independent of geometry, the probability dis-
tribution is then dominated by the bending energy, re-
sulting in

P (m,n) ∝ exp

−1

4
βNB

∑
i=1,2,3

(θ
(m,n)
id,i − θ0id,i)2

 . (4)

To test this analysis, we used an adapted thermody-
namic integration algorithm to compute the free energy

for different tubule geometries g
(m,n)
L . In brief, the al-

gorithm evaluates the free energy change for each ge-
ometry along a thermodynamic pathway that gradually

transforms the Hamiltonian of the system from a refer-
ence state (an Einstein solid with the same number of
vertices) to our computation model (Eq. 1). We find
that the measured free energy difference between differ-
ent tubule geometries closely agrees with the bending
energy difference, confirming the validity of the simpli-
fications described above. See Fig. §16 and SI section
VII for details about free energy computations and the
comparison to the bending energy.

B. Continuum equilibrium model

To obtain an approximate analytical expression for the
tubule width distribution, we adopt the continuum limit
and neglect the presence of defects. In this limit, the
bending energy as a function of tubule diameter D is
given by the Helfrich energy [39]

gD =
2a0γ

L
−
(

3EB

2
+ Ts

)
+ 2B̃a0

(
1

D
− 1

D0

)2

, (5)

with D0 as the diameter of the target structure and
B̃ as the effective bending modulus in the continuum
limit. The continuum bending modulus is related to
the bending modulus B of the discrete model by B̃ =
(
√

3/2)B [40].
We evaluate the equilibrium width fluctuations of the

closed tubules (∆D ≡
√
〈(D − 〈D〉)2〉) as a function of

their length L. By performing analogous simplifications
to the discrete model (see SI section II), we obtain:

∆D ∼=

√√
3D3

0kBT

6πBL
(6)

.
Equation (6) shows that the relative equilibrium width

fluctuations decrease with bending modulus, but increase

with target diameter as ∆D/D0 ∼ D
1/2
0 , as found for

spherical curvature-controlled capsids [15]. However, a
key difference for tubules is that the equilibrium fluctua-
tions become negligible for tubules with large aspect ra-
tios L� D. Thus, the observations from simulations and
experiments of appreciable width fluctuations in large-
aspect ratio tubules indicate that kinetic effects are im-
portant in determining the polymorphism.

C. Comparing simulation results against
equilibrium width distributions

By comparing the simulation and equilibrium compu-
tation, we find that tubule geometry distributions from
a dynamical simulations have larger variances than pre-
dicted by the equilibrium models. Fig. 5 compares the
width fluctuations ∆D measured in the simulations to
the scaling law (Eq. (6)) from the equilibrium compu-
tation for different values of the bending modulus and
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FIG. 5. Comparing the tubule geometry distribution from
Monte Carlo assembly trajectories with the equilibrium the-
ory shows that tubule closure fixes tubule geometries out of
equilibrium. Tubule width fluctuations ∆D measured from
simulations at different parameter sets, plotted according to
the scaling from equilibrium theory (Eq. (6)). The dashed
black line shows the equilibrium result for the tubule length at
the end of the simulation (with L = Lend in Eq. (6)), while the
dashed red line shows the expected result if the geometry is
quenched at the point of closure (with L = Lclose in Eq. (6)).
Different symbols represent different bending modulus val-
ues B, and the color shows the first lattice number m of the
target tubule geometry (m,n); all structures in this dataset
have n = 0. The inset shows an analogous comparison for
the fraction of tubules within the defect-free population that
have the target geometry. The black asterisk symbols show
the discrete model prediction (Eq. (4) with L = Lend) and
the red pentagon symbols show the discrete model prediction
with L = Lclose. Other simulation parameters: EB = 6 kBT
and ffusion = 10−3.

target geometry. In general, we see that the distribu-
tions observed in simulations have larger variances than
the equilibrium results. Importantly, the observed ∆D
collapse to the equilibrium scaling with respect to the
target diameter D0 and bending modulus B, but not
at the tubule length at which the geometry measure-
ments are performed (Lend ∼ 3πD0, black dashed line
in Fig. 5). The measured diameter fluctuations are much
larger than the equilibrium value. Instead, the fluctua-
tions are roughly consistent with the equilibrium predic-
tion for the smaller value of Lclose ∼ 1.5D0 at which the
tubules closed. Indeed, the results match the equilibrium
prediction with L = Lclose for all parameter values ex-
cept ∆D/l0 . 0.5; below this threshold the fluctuations
are smaller than the discrete monomer size and the con-
tinuum approximation breaks down. Note that similar

results were observed for the same computational model
in Ref. [35] and were shown to be consistent with exper-
iments on DNA origami subunits assembling the tubules
in Ref. [9]. A detailed description of how we measure the
tubule diameter and the closure size is given in the SI
(Fig. §4 and Fig. §5).

The fact that the fluctuations are consistent with the
equilibrium prediction, but at the smaller length Lclose,
indicates that the geometry distribution is kinetically
controlled. This conclusion is consistent with the obser-
vation from simulations that the geometry rarely changes
once a tubule closes, which can be understood from the
fact that, after closure, all monomers have their maxi-
mum number of bonds except those at the two tubule
ends. Rearrangement of the tubule geometry requires
breaking a significant number of bonds, and thus over-
coming a large free energy barrier. Note that the sub-
stitution of Lclose into Eq. (6) amounts to a quasi-
equilibrium assumption: Because assembly occurs near
equilibrium for the parameters considered in Fig. 5, the
tubule geometry distribution at the time of closure is
merely consistent with the equilibrium distribution at the
corresponding tubule length Lclose. However, this condi-
tion breaks down for larger values of the edge fusion rate
ffusion as discussed next.

We also compared the fraction of each tubule geom-
etry (m,n) predicted by the discrete model against the
simulation results, which indicated a similar trend as for
the continuum model: The distribution computed using
Lclose is much closer to the simulation results as com-
pared with using Lend (Fig. 6), in terms of the width
distributon and the yield of the target geometry (Inset
of Fig. 5). Here, we replot the distribution in Fig. 3(C)
against the diameter of the assembled tubule geometries
(bars in Fig. 6). However, as ffusion increases from 10−4

to 10−2, the skewness of the tubule width distribution
changes from below to above D0. The equilibrium com-
putation at Lclose does not predict the change in skewness
resulting from the change in the assembly kinetics.

This result shows that the simple picture based on a
quasi-equilibrium morphology distribution at Lclose does
not capture all kinetic effects that control the tubule mor-
phology distribution. In section III D we develop a model
that accounts for these additional dynamical influences.

D. Kinetic model for tubule geometry distributions

The results shown thus far suggest that factors af-
fecting the size and geometry of the tubule at the mo-
ment of closure are the key determinants of the observed
steady-state geometry distribution. In this section, we
develop a discrete model that incorporates both the ki-
netics and thermodynamics of the system and we show
that it semi-quantitatively describes the simulation re-
sults. We present an analogous continuum model in SI
section VC.

We consider the structure before closure as a circular
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FIG. 6. Comparing measured tubule width distributions to
the discrete equilibrium model (Eq. (4)). Bars are the simu-
lation results with indicated values of ffusion, while symbols
represent the equilibrium results, with tubule length at the
simulation endpoint or at closure respectively. Other simula-
tion parameters: B = 20 kBT , EB = 6 kBT , and the target
tubule geometry is (10,0).

disk that is bent to have the stress-free curvature of the
target tubule (see Fig. §11 for a schematic of the model).
The size N of the disc grows with a rate kgrow that is
proportional to its boundary length:

kgrow(N) = k0grow
√
N, (7)

where k0grow is a factor that depends on B and EB (See
Fig.§8 and SI section IIIE for details about growth rate
measurements). This estimate is valid when the criti-
cal nucleus size is small compared to the closure size,
which covers most of the parameter space that we con-
sider in this work. To simplify the model, we ignore the
stochasticity in subunit association by assuming that N
increases by one subunit at regular time intervals given
by ∆t = 1/kgrow.

While remaining at a size N , the open structure also
attempts to close with a rate kclose. Once the structure
closes, we assume that it does not reopen. Allowing for
a finite reopening probability is straightforward, but has
a negligible effect on the results for the parameters that
we focus on because reopening is rare and/or transient.
We assume kclose decreases exponentially with the free
energy barrier to closure ∆Gclose, which arises primarily
from the bending elastic energy due to the difference in
the curvature of the closed structure and the stress-free
structure. SI section IIIG presents estimates and mea-
surements of ∆Gclose.

At a given size N , the rate k
(m,n)
close of closing into a

structure (m,n) is then approximated by

k
(m,n)
close (N) = k0close exp

(
−

∆G
(m,n)
close (N)

kBT

)
I
(m,n)
close (N).

(8)
Here k0close is the closure attempt rate (i.e. the rate in

the absence of a barrier), and I
(m,n)
close is a function that

indicates whether a particular structure (m,n) is geo-

metrically compatible with closure at size N : I
(m,n)
close = 1

if it is compatible and I
(m,n)
close = 0 if it is incompatible

(see SI section VB for details about the determination of

I
(m,n)
close (N)). Assuming that shape fluctuations are fast in

comparison to the net growth timescale, the net closure
rate k̃close for a disk with size N is then given by a sum
over all accessible geometries as

k̃close(N) =
∑
(m,n)

k
(m,n)
close (N). (9)

Finally, we evaluate the closure probability as a func-
tion of time. To simplify the calculation, we assume that
the structure is larger than the critical nucleus size, and
that closure is a rare event in comparison to growth. In
the absence of closure, the time at which a structure first

grows to size N is thus tN =
∑N−1

i=1 1/kgrow(i), and the
probability that such a structure stays open up for an
additional time δt < tN+1 − tN is

Popen(t+ δt,N) = Popen(tN , N) exp
[
−k̃close(N)δt

]
.

(10)
By summing over smaller sizes, we can compute the prob-
ability that a structure has stayed open until size N as

Popen(tN , N) =

N−1∏
i=1

exp

(
− k̃close(i)
kgrow(i)

)
. (11)

The probability for the structure to close at size N is
then given by

Pclose(N) = Popen(tN , N)

[
1− exp

(
− k̃close(N)

kgrow(N)

)]
(12)

The probability to assemble a geometry (m,n) is then
computed by summing over all sizes N that can close to
(m,n)

P
(m,n)
close =

Nmax∑
N=1

Pclose(N)
k
(m,n)
close (N)

k̃close(N)
, (13)

where the second term on the right-hand side is the con-
ditional probability for assembling the geometry (m,n),
given that the structure closes at size N . Eq. (13) shows
that the ratio of growth to closure rates, which is a kinetic
factor, can significantly affect the tubule geometry distri-
bution. Next, we will compare these predictions against
the dynamical simulation results from section II B.

E. Testing the kinetic model predictions

The simple kinetic model predicts the tubule geom-
etry distribution and yield of the target geometry over
a wide range of parameter space of the bending modu-
lus B and the effective closure rate (normalized by the
net growth rate) log (k0close/k

0
grow). We define the yield
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FIG. 7. The kinetic model captures the geometry distributions observed in simulations. (A) Comparison of the tubule width
distribution between the kinetic model (red symbols) and simulation results (blue bars) for three representative parameter
sets. The triangle, circle, or square symbol at the top left of each panel indicates its corresponding location in the parameter
space for the plot shown in (B). Yield is defined as the fraction of a tubule geometry assembled within the entire population
of the assembled structures, including the structures that do not close. (B) Color map showing the yield of the target tubule

geometry (P
(10,0)
close defined in Eq. 13) predicted by the kinetic model as a function of the bending modulus B and the normalized

closure rate k0close/k
0
grow (shown on a log scale). The yield is taken relative to all assembled structures, including those that fail

to close. The inset shows the fraction of closed tubules predicted by the model (
∑∞

i Pclose(i), Pclose(i) is defined in Eq. 12).(C)
Kinetic model predictions for the mean (D̄, top panel) and coefficient of variation (∆D/D̄, bottom panel) with respect to the
normalized closure rate and bending modulus. In all cases the target geometry is (10,0).

as the fraction of a specific defect-free tubule geometry
(m,n) within the entire population (including the un-
closed structure and the defective tubules), and k0close
is defined as the rate for an isotropic open structure to
close and form the target geometry. In the simulations,
the effective closure rate log (k0close/k

0
grow) is controlled by

the parameter ffusion, and we measured log (k0close/k
0
grow)

from simulation trajectories as described in SI section
IIIF and IIIG.

The kinetic model accurately predicts the detailed dis-
tribution of defect-free tubule geometries, as well as the
fraction of structures that fail to close in the dynamical
simulations. Comparisons between the kinetic model and
the simulation results are shown for three representative
parameter sets in Fig. 7(A). Starting from the top panel,
we reduce ffusion by 100× at fixed B (middle panel),
which does not significantly change the spread of the dis-
tribution of closed tubules, but changes the skew from
wider than targeted to narrower than targeted. More sig-
nificantly, the yield of the target geometry decreases from
40% to 28% while the fraction of the target geometry
within the defect-free population does not significantly
change. This observation is because the proportion of
unclosed structures increases from 0 to ∼ 45% within the
entire population (Fig. §7). The kinetic model captures
this trend.

In the bottom panel, we increase B at fixed ffusion (rel-
ative to the middle panel), which narrows the distribution
considerably and shifts the mean toward the target diam-
eter. In particular, a significant fraction of tubules with
sizes < D0 at B = 20 kBT shifts to the target geometry

with D0 at B = 50 kBT . This trend reflects a combina-
tion of thermodynamic and kinetic effects. Increasing B
increases the thermodynamic stability of the target ge-
ometry relative to competing structures. It also decreases
the net growth rate k0grow because monomer association
incurs a greater entropy penalty (since fewer configura-
tions are accessible for binding at higher B), which in-
creases the effective closure rate (see Fig. 7(B)) and thus
favors smaller structures. However, the thermodynamic
effect dominates in this case and shifts the distribution
upward toward D0 (See SI Fig. §14 for details).

Fig. 7(B) shows that the yield of the target geometry
also depends on a combination of thermodynamic and
kinetic factors. The value of the bending modulus B sets
an upper limit on the yield, while the yield itself changes
nonmonotonically with respect to the normalized closure
rate at fixed B. These trends reflect the fact that the
bending rigidity determines the spread of the distribu-
tion, while the closure rate mostly influences the mean of
the distribution. As noted above, a higher closure rate
leads to structures that close earlier and thus shifts the
mean toward smaller structures.

The bending rigidity controls both the mean D̄ and
the width fluctuation ∆D of the distribution, while the
effective closure rate mostly influences D̄. Figure. 7(C)
shows the mean of the distribution D̄ (top panel) and
the width fluctuation ∆D (bottom panel) as functions of
the closure rate and the bending modulus. We see that
the mean width monotonically decreases with increas-
ing normalized closure rate or decreasing B. In contrast,
the fluctuations ∆D/D̄ decrease with B but depend only
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weakly on the closure rate. The latter trend is consistent
with the qualitative results from the quasi-equilibrium
model (section III C) based on the equilibrium geometry
distribution at the time of closure. In particular, the scal-
ing result ∆D ∼ B−1/2 still applies. However, the results
for the mean width reflect the fact that the probability
for an open structure with size N is determined by both
the effective closure rate at that size and the time for
the structure to remain at size N . As shown above, the
closure rate increases with k0close and decreases with B,
while the time for the structure to remain at a given size
decreases with increasing k0grow. The irreversible nature
of tubule closure plays a key role in this trend, since the
smaller structures always have the opportunity to close
before larger sizes. Thus, increasing the closure rate or
extending the time at a given size will cause the entire
distribution to shift toward smaller widths.

Interestingly, the closure rate does not significantly in-
fluence ∆D/D̄. Although the kinetic effects discussed
above change the tubule closure size Nclose, they do not
significantly change the relative prevalence of different
tubule geometries at a given N . Thus, as long as the
shift of the distribution away from D0 is not too large,
the density of states around the preferred geometry at
size Nclose remains comparable to that around the target
geometry. This distribution is then essentially fixed once
closure occurs.

Taken together, the computational and theoretical re-
sults considered thus far demonstrate that the outcomes
of tubule self-assembly are determined by a combination
of thermodynamic and kinetic factors.

IV. CONCLUSIONS

In summary, we have used kinetic Monte Carlo sim-
ulations and free energy calculations to understand the
dynamical assembly of helical tubules. Our simulations
reveal how assembly pathways and the resulting tubule
morphologies depend on control parameters. The geom-
etry distribution of assembled tubules predicted by the
simulations semi-quantitatively matches the distribution
observed in experiments on tubules assembled from DNA
origami monomers [9], suggesting that the model cap-
tures the key physics of the experimental system. Fur-
ther, we show that the simulations provide a useful tool
to obtain a first-order estimate of the physical parameters
of the experimental system, and can serve as a predictive
guide for future experiments.

Comparison of the simulation results with an equilib-
rium calculation showed that the geometry distribution
of assembled tubules depends on a balance between ther-
modynamic and kinetic effects. While the observed mag-
nitude of the fluctuations in the tubule width ∆D match
the equilibrium scaling (∆D/D0 ∼

√
D0/BLend) with

respect to bending modulus B and preferred diameter
D0, the distribution of assembled tubules is significantly
broader and independent of length (Lend). This behavior

can be explained by the fact that the tubule geometry
becomes fixed shortly after an assembling proto-tubule
closes upon itself. Closure stabilizes monomer interac-
tions except for those at the two open ends of the tubule,
and the topology rearrangements required to significantly
change the tubule structure would incur a large free en-
ergy barrier. For this reason, the observed geometry dis-
tribution fluctuations tend to scale with the tubule length

at closure, as L
−1/2
close . For systems in which closure rates

are slow in comparison to growth timescales, the resulting
tubule morphology distribution is approximately given
by the equilibrium distribution at Lclose. However, for
systems with faster closure rates (relative to assembly),
additional kinetic effects shift the geometry distribution
further out of equilibrium. We developed a simple kinetic
model which captures these additional effects.

Model limitations and outlook.

While our kinetic model closely reproduces the com-
putational results over a wide range of parameter space,
it is limited to regimes in which tubule closure occurs
above the critical nucleus size. In particular, the model
assumes a positive net growth of the assembling tubule
and thus is limited to the forward-biased growth phase
that occurs beyond the critical nucleus size. In a future
work, we plan to study the nucleation behavior in detail,
and how the assembly kinetics and geometry distribution
change when closure occurs before nucleation.

In this study we have primarily focused on parameters
that lead to well-formed tubules, with a low fraction of
defective tubules. However, the simulations provide in-
sights into the factors and mechanisms controlling defect
formation. For example, analysis of our simulation tra-
jectories suggests that defective tubules frequently arise
when closure happens locally and independently at two
or more sites on the boundaries, with geometries that
are incompatible with the overall tubule geometry. This
mechanism results in a local crack between binding sites,
which is unable to anneal unless one of the bound edge-
pairs breaks. Further, defective tubules become more
probable as the tubule growth rate increases. This ob-
servation is consistent with the general principles estab-
lished from other self-assembly reactions and crystalliza-
tion (e.g. [32, 34, 41]). When growth rates are sufficiently
fast that monomers that associate with strained interac-
tions cannot anneal before additional subunits assemble,
defects become locked into the growing structure.

While some potential mechanisms of defect forma-
tion are disallowed by the simplifications of our model
and simulations, these mechanisms can be neglected in
the DNA origami experiments that motivate our work.
In particular, the algorithm does not allow for bind-
ing between multiple partially assembled structures, but
these events are negligible under the dilute assembly
conditions with a substantial nucleation barrier that
tend to lead to productive assembly [32, 34, 42]. Sim-
ilarly, we do not consider binding of subunits along non-
complementary edges because in the experiments [9],
monomer-monomer interactions were made highly spe-
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cific using shape-complementary interactions based on
blunt-end DNA base stacking, and there is no evidence of
significant binding between non-complementary edges in
the experiments. Note that it would be straightforward
to extend the model to eliminate these simplifications to
describe other systems for which these mechanisms are
not negligible.

We also note that a kinetic Monte Carlo algorithm can
only be reliably mapped to real dynamics if the move set
accounts for all relevant transitions that occur in a given
system, with approximately correct relative rates for each
move. In this respect it is encouraging that the simu-
lated tubule geometry distribution compares well with
experimental observations. However, further comparison
against additional data will be required to stringently
test the simulated dynamics, and to refine relative rates.
In particular, the simulations described here suggest that
the rate at which free edges within an assembled tubule
bind to each other is an important parameter controlling
the closure rate and defect formation.

With the availability of additional experimental data,
some of these unknown coarse-grained parameters could
be directly estimated from experiments. At the same
time, these measurements would provide estimates of un-
known experimental parameter values. For example, by
optimizing simulation tubule geometry and width distri-
butions against experiments performed at different pa-
rameter values (e.g. target geometry, and monomer con-
centration), we could estimate the bending rigidity, as
well as the closure and growth rates. Additional experi-
mental techniques could enable directly estimating some
coarse-grained parameters in the model. For example,
growth rates could be estimated from dynamic light scat-
tering experiments of tubule assembly, while dimerization
rates and free energies for specific monomer-monomer
edge interactions could be estimated from static light
scattering experiments of subunits which each have only

a single edge activated for binding [8, 9, 43]. Angu-
lar fluctuations of dimers measured using atomic force
microscopy (AFM) [44, 45] or estimated from electron
density in cryo-electron microscopy experiments [8, 9, 46]
would provide an independent means of estimating the
bending rigidity.

Through combination with such experimental tech-
niques, our computational and theoretical study could
be used to improve the design of existing experimental
platforms for tubule assembly. Further, analysis of simu-
lation trajectories for a validated model will provide in-
sights into mechanisms underlying assembly of tubules in
these systems, and potentially other related systems with
helical geometries such as microtubules [21–26, 47, 48]
and filamentous viruses [49–54]. More broadly, the sim-
ulation approach and kinetic models are generalizable,
and thus could be used to provide similar insights into
other assembly geometries with different symmetries and
mechanisms of self-limitation.
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