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Abstract
The ability to design and synthesize ever more complicated colloidal particles opens the
possibility of self-assembling a zoo of complex structures, including those with one or more
self-limited length scales. An undesirable feature of systems with self-limited length scales is
that thermal fluctuations can lead to the assembly of nearby, off-target states. We investigate
strategies for limiting off-target assembly by using multiple types of subunits. Using
simulations and energetics calculations, we explore this concept by considering the assembly
of tubules built from triangular subunits that bind edge to edge. While in principle, a single
type of triangle can assemble into tubules with a monodisperse width distribution, in practice,
the finite bending rigidity of the binding sites leads to the formation of off-target structures. To
increase the assembly specificity, we introduce tiling rules for assembling tubules from
multiple species of triangles. We show that the selectivity of the target structure can be
dramatically improved by using multiple species of subunits, and provide a prescription for
choosing the minimum number of subunit species required for near-perfect yield. Our
approach of increasing the system’s complexity to reduce the accessibility of neighboring
structures should be generalizable to other systems beyond the self-assembly of tubules.

Keywords: self-assembly, multicomponent, Monte Carlo simulations, free-energy landscape,
self-limited assembly, valence-limited interactions, complexity
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1. Introduction

In recent years, new techniques have been developed that allow
for greater control over the types of interactions that can be pre-
scribed between nanometer- and micrometer-scale colloidal
particles. In particular, valence-limited interactions provided
by patchy colloidal particles [1–7] or DNA origami [8–10]
expand the diversity of structures that can be self-assembled,
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including complex crystal types, like the Kagome [11] or
diamond lattices [12], as well as non-crystalline structures,
like colloidal molecules, one-dimensional filaments, and two-
dimensional sheets [13–31]. The importance of valence-
limited interactions in assembling complex structures is that
they constrain the number of contacts per particle and can be
used to enforce binding at specific angles. This angular speci-
ficity has the additional ability to impart an effective curvature
to subunits that can cause the assembly to self-close.

A particularly interesting subset of assemblies enabled by
specific, directional interactions is self-limited structures, in
which one or more dimensions of the final assembly have a
finite extent [32]. These types of self-limiting architectures are
common-place in living systems, with examples ranging from
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microtubules, which are made up of a pair of subunits [33],
to viral capsids [34], which can be constructed from a handful
of subunits, to ribosomes, which are fully-addressable struc-
tures [35]. While groups have made progress in assembling
a variety of self-limiting structures from synthetic colloids
[16–19, 21, 24, 28, 29], in almost all cases, the self-limiting
dimension is comparable to the size of the individual subunits.
Creating structures with a self-limited length scale that is larger
than the subunits remains a challenge. One recent success in
this regard has been seen in the assembly of icosahedral shells
using DNA origami, whereby triangular subunits with specific,
valence-limited interactions assembled into a range of shells
with varying size [10].

A fundamental consequence of introducing a self-limited
length scale that is larger than the size of the constituent parts
is that the self-limited length can vary due to thermal fluc-
tuations. These fluctuations can cause the system to access
unintended final states, leading to a distribution of assem-
blies rather than just the single target structure [36]. This
behavior has been seen in synthetic systems, such as the
assembly of rings from wedge-shaped particles made by DNA
origami, which form a distribution of ring sizes [9]. There, the
off-target states occur due to neighboring minima in the free-
energy landscape. In general, the off-target states can either
be accessed in equilibrium, as in the case of the rings men-
tioned above [9] as well as in self-limited, multi-component
assemblies [37, 38], or from kinetic traps, where assembly gets
caught in a local minimum at early stages of self-assembly and
is unable to relax to a lower free energy.

In this report, we examine how using multiple species of
particles can limit the formation of off-target states by engi-
neering the free-energy landscape of assembly. Specifically,
we study the assembly of triangular subunits into cylindrical
tubules. Using both simulation and energetic calculations, we
explore how the number of off-target tubules grows with the
designed target width and the bending rigidity of the subunits.
By finding allowed tilings of the plane with multiple species
of triangles, we construct interactions that remove nearby off-
target states from the energy landscape. We show that when the
periodic length scale associated with a multiple-species tiling
becomes comparable to the fluctuations of the self-limited
size of the assembly, the target structure assembles with near-
perfect yield. This criterion defines a minimum number of
subunit species that are needed to guarantee assembly of a
prescribed architecture, exemplifying the trade-off between
the complexity of the assembly and the distribution of assem-
bly outcomes. Our results provide a route to create tubules
with precisely controlled widths and could be extended to other
self-limiting architectures.

2. Self-assembly of tubules from triangular
subunits

2.1. Subunit design and structure classification

We consider the assembly of cylindrical tubules from triangu-
lar subunits, as illustrated in figure 1(a). The subunits are flat
equilateral triangles, which bind edge to edge. Since a tubule

Figure 1. Design principles of tubule assembly. (a) Schematic of the
self-assembly of triangular subunits into a tubule. (b) Diagram of the
specific interactions. Each edge has a specific self-interaction (side 1
binds to side 1, etc) and has a specified dihedral angle between the
edges of two bound subunits. These specific angles act as a form of
effective curvature for the subunits. (c) Shows how a discrete tubule
can be indexed by considering periodic boundary conditions
between two vertices of a triangular lattice. The line between the
two circled vertices denotes the circumference of the tubule that will
form, while the lines labeled by m and n show the number of steps
needed to reach that vertex along lattice directions m and n and has
a width w. The labeling of (m, n) will be used to denote the type of
tubule that forms, some examples of which are shown for (9, 1),
(10, 0), and (11, −1).

is an object with non-zero curvature, that curvature must be
encoded in some way into the subunit. We accomplish this goal
by considering subunits that form a specified dihedral angle
between their edges when they bind. Therefore, each triangle
has associated with it three dihedral angles, one for each side.
We consider a case where the interactions are specific and all
three sides of the triangle are distinguishable. The simplest set
of interactions that prescribe the assembly of a tubule is side
1 binds to side 1, side 2 to side 2, and side 3 to side 3. The
specificity of these interactions is important in order to pre-
serve the same local curvature everywhere across the assembly
and to ensure that the pattern is deterministic. A schematic
of such specific interactions and dihedral angles are shown in
figure 1(b).

Any tubule formed from triangular subunits can be clas-
sified uniquely by a pair of indices. Consider a tubule as a
rolled-up triangular lattice or a sheet with periodic boundary
conditions along two parallel lines (figure 1(c)). Within this
conceptual framework, a tubule can be constructed by choos-
ing any two points on this plane and enforcing them to be peri-
odic with one another. In other words, these two points overlap
when the sheet is rolled up into a tubule, as in figure 1(c).
To classify the tubule that forms, we count how many lattice
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edges need to be traversed between the periodic vertices. Tak-
ing the unit vectors of this tiling to be m and n, as shown in
figure 1(c), we can go between the vertices in m and n steps in
the respective lattice directions, giving a total displacement of
w = mm + nn. The corresponding tubule would be identified
as (m, n) and have a width of w =

√
m2 + n2 + mn. Here, the

width w refers to the width of the strip on the triangular lattice
(figure 1(c)), which corresponds to the circumference of the
closed tubule.

For any given tubule, there is a unique set of dihedral
angles between adjacent triangular edges that will yield that
desired structure. These values can be obtained by constrain-
ing the vertices of the lattice to lie on the surface of a cylin-
der and finding the angle between adjacent faces. Note that
in this construction, the specified dihedral angles are constant
along a given lattice direction, denoted by indices 1, 2, 3 in
figure 1(c). This constraint imposes an orientational order for
the triangular subunits, which we will return to later.

2.2. Computational methods

We explore the assembly outcomes using grand canonical
Monte Carlo simulations. Specifically, we use the event-driven
Monte Carlo algorithm developed by Rotskoff and Geissler
[39] and Li et al [40], and adapted to tubules in reference
[41], in which an assembled structure exchanges subunits with
a bath at fixed chemical potential. Each triangular subunit is
modeled by three vertices and three straight edges connecting
the vertices. The Hamiltonian of the system is given by,

H =
1
2

∑

Bound Edges

EB +
∑

Edges

1
2

S(l − l0)2

+
∑

Adjacent Faces

1
4

B(θ − θ0)2. (1)

The first term is the binding energy. EB is the energy dif-
ference between a pair of bound and unbound edges, and is
set to be the same for all favorable interactions. The second
term is the stretching energy. S is the stretching modulus of
the edge, l is the instantaneous length of the edge, and l0 is
the stress-free length of the edge. The third term is the bend-
ing energy. B is the bending modulus of the edge pairs and is
again set to be the same for all edges. θ is the instantaneous
dihedral angle between two subunits and θ0 is the preferred
dihedral angle for a given tubule structure and type of edge-
pair. See supporting information (https://stacks.iop.org/JPCM/
34/134003/mmedia) (SI) section 1 for a detailed description of
our computational methods.

For a given set of input parameters—the bending modu-
lus, the lattice numbers m and n of the target, and the num-
ber of unique species—we perform one thousand independent
simulations and analyze the distribution of tubule types that
form. We prescribe the equilibrium dihedral angles, θ0, to favor
(m, 0) and enforce the binding rules specified previously. We
tune the various energies in the Hamiltonian to keep the super-
saturation low enough that the structure can nucleate, grow,
and close near to equilibrium in a reasonable time scale. The
simulation starts with a single subunit and grows by adding

subunits onto the pre-existing structure, ending once the tubule
has a length roughly three times its circumference. Finally, we
determine the tubule type of the end state and compute the
distribution of tubule structures for each condition.

We only examine defect-free tubules in the following anal-
ysis. We consider a tubule to be defect-free if it has the same
tubule structure, characterized by the same pair of indices
(m, n) along its entire length. While it is possible for defective
tubules to form in our simulations, we find that the likelihood
of forming a defective tubule does not depend on the number
of subunit species used for assembly. However, the fraction of
defect-free tubules does vary between 95%–63% depending
on the targeted tubule width (see SI figure S3). We hypothe-
size that defect creation is related to the degree of supersat-
uration and the kinetics of monomer addition near closure.
This hypothesis is consistent with the type of defective tubules
that we observe, which tend to have a central region that does
not close properly, resulting in a tubule with a heterogeneous
tubule type along its length. See SI section 2 for a description
of the algorithm that we use to determine the tubule type and
for details on the defect rates.

3. Results and discussion

3.1. The origin of off-target assemblies

The results of our simulations show that assembly yields
a broad distribution of tubule types. Figure 2(a) shows an
example of such a distribution. The bevel angles for this
example were chosen to target a (10, 0) structure. While we do
see that the majority of tubules formed the target state, there
is a broad distribution of adjacent states that have also formed,
extending one to two lattice steps in both m and n directions.
The probability for assembling off-target states falls off fur-
ther from the target state as expected, since the dihedral angle
differences, and hence the elastic energy cost, become more
significant.

To understand the origin of this distribution, we consider
the process by which assembly occurs and hypothesize that
the distribution is dictated by the mechanism of tubule closure.
Assembly begins when subunits come together to nucleate a
curved sheet. Once the extent of the sheet is large enough,
it can close to form a short tubule, which then grows by the
addition of subunits to its free ends. In the pre-closure state,
thermal fluctuations can cause the sheet to close at larger
or smaller widths around the target state, sampling the ener-
gies of different closed states. We hypothesize that once the
tubule closes, it is highly unlikely to open back into a sheet
because doing so would require rupturing multiple edge–edge
interactions simultaneously. Therefore, once the assembly has
gone through closure and begun to extend, the tubule type is
essentially fixed, even if it is not the global free-energy min-
imum. While the energy difference between off-target states
and the target structure continues to increase as the tubule
grows longer, without the ability to open again, the system
cannot equilibrate to the designed global energy minimum.
Indeed, in simulations, we find that the tubule type does not
change after a structure has closed (see figure S2(c)).
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Figure 2. Reduction of target yield due to fluctuations. (a) Distribution of tubules from a simulation with a target structure of (10, 0) with
B = 20 kBT /rad2. The area of each circle is proportional to the number of defect-free structures that formed. (b) Theoretical elastic energy
cost of forming different tubule types with dihedral angles that are designed to form a (10, 0) tubule with B = 20 kBT/rad2. (c) Estimated
probability for different assembled tubule types; circle size is proportional to the probability. The probability is estimated by
P(s) ∼ e−αE(s)/kBT , where s is the state, E(s) is the elastic energy of that state, and α is a factor adjusting the free-energy barrier described in
the text. For clarity, only states with probability greater than 0.005 are shown. (d) Number of tubule types N types that form for varying
bending rigidity, B (units of kBT/rad2), and target width, w. The points with connected lines are from the elastic energy calculations; the
squares are the results from simulations. (e) Number of tubule types versus a rescaled width of w/

√
B. The dashed line is a guide to the eye

and shows a power law with slope 2; the inset shows the same data, but with α = 1.0.

In addition to running simulations, we also estimate the dis-
tribution of structures that may arise during assembly from
calculations of the elastic energy at closure. The penalty for
forming off-target states comes from the elastic energy cost
of not abiding by the prescribed dihedral angles. Recall that
the bending energy, Eθ, for any binding site is given by
Eθ =

1
2 B(θ − θ0)2. For the case of our triangular subunits, the

elastic energy per subunit is half the sum over all three bind-
ing sites. When closure happens, it occurs for a finite num-
ber of subunits in the assembly, NC, all of which contribute
to the elastic energy. The full elastic energy cost at closure is
therefore

Eθ =
1
4

NC

∑

i=1,2,3

B(θi − θi,0)2, (2)

where the extra factor of 1
2 comes from the fact that a single

binding site is shared between two subunits. To estimate the
closure size, we assume that subunit addition occurs isotrop-
ically, forming a circular disk with a diameter of the tubule
width, w. Taking the ratio of the disk area to the area of a

subunit gives NC = πw2/
√

3. To get a more accurate account-
ing of the free-energy cost of forming misassembled struc-
tures, one would need to include the surface energies and the
various entropic contributions, but we find that just consider-
ing the bulk elastic terms reproduces the scaling that we find
in simulation.

We see the elastic energy at closure is lowest at the target
state and increases by a few kBT at the nearest off-target states,
suggesting that these states are likely accessible in a system at
finite temperature (figure 2(b)). To get an estimate of the tubule
type distribution, we compute the probability of a structure
s according to P(s) = e−αE(s)/kBT/Z, where Z is the partition
function and α is a factor that adjusts the height of the free-
energy barrier between the pre-closure and the closed states to
account for missing contributions to the closure rate (e.g. devi-
ations of pre-closed tubules from the assumed circular shape
and other entropic effects). Supplementary simulations found a
value ofα = 0.3 and are described in SI section 3. Without this
additional factor the energetics predict narrower distributions.
Figure 2(c) shows the probabilities according to the energy
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landscape in figure 2(b), which bears a similar shape and extent
to the simulated distribution in figure 2(a).

Estimates of the number of accessible states follow power-
law scalings with the tubule width and bending rigidity.
From the energetics calculation, we make an estimate of the
number of different structures, Ntypes, by counting how many
states have a probability greater than 0.25%. From simula-
tions, we look at the final tubule structures that form in four
hundred different runs. We find that the number of different
structures that assemble is sensitive to both the target width and
the bending rigidity: the number of accessible states increases
with increasing width and decreases with increasing bending
rigidity (figure 2(d)). We find that these same data collapse to a
single curve when rescaled by w/

√
B (figure 2(e)). In the inset

of figure 2(e) we show the same data but using α = 1.0 for the
energetics, finding that the number of types predicted is lower
than what we see in simulation. This implies thatα is capturing
some aspects of the kinetic processes during closure.

The scaling for the breadth of the tubule type distribution
comes from a balance between the closure size and the fluctu-
ations of the curvature of the sheet before closure. We consider
the Helfrich energy of a curved sheet [42], E = 1

2 BA(Δκ)2,
where A is the area of the sheet and Δκ is the deviation of
its curvature away from the ideal curvature. We can approx-
imate this curvature as (Δw/w2), where Δw is the fluctua-
tions of the width and w2 is the area of the sheet. Looking
at the size of these fluctuations on an energy scale of kBT
shows that Δw ∼ w/

√
B. Therefore, the scaling that we find

in figure 2(e), N types ∼ Δw2, arises from the fact that ther-
mal fluctuations populate a region of vertices around the target
vertex with an area of Δw2.

These results illustrate a fundamental hurdle for self-limited
assembly: in a thermal system, it is difficult to achieve speci-
ficity of a target state when the self-limited length scale is large
compared to the subunit size. Small fluctuations of the dihedral
angles between subunits become amplified as the number of
subunits in the self-limited length scale increases. Even though
the rigidity of individual dihedral angles may remain the same,
the fluctuations of the self-limited length scale grow propor-
tionally to the self-limited lengthscale itself, as we saw from
the Helfrich energy. Compounding this effect, the process of
irreversible closure prevents the assembly from visiting differ-
ent states at later times to further relax. Therefore, the breadth
of the distribution is driven by a kinetic process, which yields
a larger variety of states than would be expected in equilib-
rium. It is this bottleneck to high-yield of the specific target
that must be engineered around, either by making ever stiffer
subunits, circumventing closure-control by seeding nucleation
with specific geometries, or by altering the energy landscape
near closure. Here, we will explore this last direction by con-
sidering how multiple types of interacting subunits limit the
accessible states at closure, and thereby prune off-target states
from the distribution of final structures.

3.2. Allowed tilings with multiple species

To proceed, we extend our framework to allow for multiple
species of triangles, where a species of triangle is a subunit

Figure 3. Rules for allowed tilings. (a) An allowed four color tiling
that can be wrapped into a tubule (pattern 4-4). Dashed lines labeled
1, 2, 3 show the three lattice directions that denote the specific sides
of the triangles. Two green triangles and their neighbors are outlined
to highlight their interactions. Tick marks on triangles are placed
opposite of side 3 to illustrate the triangle orientation. Note that
triangles may only appear in orientations with 180-degree rotations.
Each specific interaction between two sides of triangles forms a
unique dimer. To the right of the pattern are the only allowed dimers
and the six-particle vertices that can be made from them. (b) For
tilings, we require that each vertex be made up of six valid dimers,
i.e. we do not allow non-bonded edges to appear in the tiling. (c)
Each pattern can be represented by a symmetric interaction matrix.
This matrix corresponds to the pattern shown in (a). Each circle
shows a favorable interaction and has its associated dimer next to it.
Colored triangles appear next to the columns and rows associated
with each color of triangle. Each interior 3 × 3 block shows the
interactions for the three sides of one triangle species.

with a distinct set of specific interactions encoded in its edges.
The first task is to identify allowed patterns of multiple species
that still satisfy the requirements imposed by the tubule geom-
etry. This challenge involves finding periodic patterns in a
triangular lattice with multiple colors of triangles. There are
many ways that one can imagine periodically coloring a trian-
gular lattice, but not all of these tilings will necessarily pre-
serve the physical rules for tubule assembly. Here, we intro-
duce three rules for multispecies tubule assembly. First, to have
a deterministic assembly, there need to be unique interactions
between subunits: each side can only bind to one other side
within the mixture of many subunit species. In the context
of a tiling, this constraint means that once the colors of tiles
adjacent to any subunit have been specified, there cannot be
different neighbors at any other location in the tiling. Second,
to impose constant dihedral angles along specific lattice direc-
tions, only rotations of 180 degrees for a given subunit type are
allowed throughout the tiling (figure 3(a)). Third, if we view
all interactions between subunits as creating allowed dimers
with specific orientations, then we also must be able to con-
struct closed vertices on the plane using either three or six of
our specified interactions (figure 3(b)); this last constraint will
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Figure 4. Restriction of allowed tubule states from multispecies
patterns. (a) Construction of a target tubule type with displacement
vector, w, from a set of primitive vectors a1 and a2. The primitive
vectors will differ depending on the specific tilings, but any allowed
w must be a linear combination of primitive vectors. (b) and (c)
Show two different tilings for three species with different primitive
vectors. The full circles show a potential target vertex for a tubule.
The dashed circles show the nearest vertices accessible using only
the primitive vectors of the tiling. (b) Shows uniform distances
between nearest vertices (pattern 3-1) while (c) has a large
anisotropy between the a1 and a2 directions (pattern 3-0).

force the system to assemble into a deterministic pattern that
is the same everywhere in the tiling.

The concept of an interaction matrix helps to make these
rules for subunit interactions more concrete. Elements of
an interaction matrix will either be non-zero, prescribing an
allowed attraction between specific sides of triangles, or zero,
meaning no binding is allowed (figure 3(c)). In SI section 4,
we describe how the restrictions mentioned above can be trans-
lated to allowed constructions of interaction matrices. Follow-
ing this construction, we enumerated all allowed tilings of a
triangular sheet for up to ten different species of subunits.
Figure 3 shows one allowed tiling for four species, which are
illustrated as four different colors.

Looking at the different tilings that can be wrapped into
tubules, we notice that some of them will be more useful for
restricting neighboring states than others. The most important
feature of a tiling in this regard is its set of primitive vectors
(figure 5). For any tiling we can define a pair of vectors, a1 and
a2, that go between similar vertices in the tiling, have a min-
imal length, and are maximally orthogonal. These primitive
vectors can then be used to identify which tubule types can be
formed from a certain pattern. Recall that for tubule type (m, n)
there is an associated displacement vector w = mm + nn. If w
can be made from a linear combination of a1 and a2, then (m, n)
is an allowed state for that tiling (figure 4(a)). See the SI for
patterns and interaction matrices.

When the two primitive vectors are large, the similar ver-
tices are farther apart, leading to greater distances between

Figure 5. Two-color tilings and their allowed tubule types. (a) A
two-color tiling that results in no additional specificity (SI pattern
2-2). The arrows on the tiling denote the primitive vectors. For this
pattern the single vertex is shown as well as its interaction matrix.
On the right plot, filled red points show allowed (m, n) tubules
resulting from this tiling. (b) Two other two-color tilings with their
respective unique vertices, interaction matrices, and primitive
vectors (top: SI pattern 2-0; bottom: SI pattern 2-1). Note that the
primitive vectors have the same lengths and orthogonality, resulting
in the same set of allowed tubules, shown in the plot to the right.
Open points show disallowed states.

allowed states. Furthermore, the closer in magnitude the primi-
tive vectors are to one another, the more uniform the restriction
of states will be around the target state. If there is a difference
in the length of the primitive vectors then the tiling will be
anisotropic and there will be an additional orientation depen-
dence of the restricted states with respect to the orientation of
the triangles. Two patterns made from three species of triangles
are shown in figures 4(b) and (c). From these two patterns we
can see that figure 4(b) shows isotropic distances to nearby ver-
tices while figure 4(c) shows anisotropic distances. Depending
upon how w is aligned with respect to the anisotropic primitive
vectors, the assembly outcome changes. For instance, if w is
aligned along a shorter primitive vector, the density of states
in that direction will be larger and will result in larger fluc-
tuations of the widths of tubules that form. In the other case,
when w is aligned along the longer primitive vector, there will
be larger fluctuations in the chirality of tubules that form. To
exemplify some of these points, we will look in detail at the
patterns formed from two colors.

3.3. Example of tilings with two colors

To illustrate how multispecies tilings can limit the number
of accessible off-target states, we first consider the allowed
tilings composed of two species. We find that there are only th-
ree unique patterns that satisfy the restrictions for assembling
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Figure 6. Increasing the target yield using multiple species. (a) Tubule type distribution computed from simulations for a (10, 0) target,
represented in the m, n space (top) and the same distribution overlaid on a triangular lattice (bottom). The diameter of each circles is proportional
to the probability of observing that state. On the triangular lattice, we observe that the spatial distribution of states around the target vertex is
roughly isotropic. (b) Examples of two four-color tilings (top: SI pattern 4-6; bottom: SI pattern 4-0). In both images the dotted line shows
the region around a target vertex where no similar vertex lies. The white circles show the accessible area for closure sites of an assembly
due to fluctuations of the pre-closure disk; higher standard deviation (σ) contours denote lower probability regions. The anisotropic tiling
excludes fewer of the fluctuations. (c) Patterns used for calculating the reduction of assembly states as we increase the number of species,
Ncolors (from top to bottom SI patterns are 3-1, 4-6, 6-3, 9-2). All but the Ncolors = 6 pattern are considered isotropic patterns. (d) Number of
accessible tubule types, N types, and probability of forming the target state, Ptarget, versus the rescaled number of colors, NcolorsB/w2. Results
from energetics calculations are the solid points; results from simulations are the open points. We observe a nearly perfect yield of the target
state when NcolorsB/w2 � 1. (e) Examples of simulated tubule distributions for target states (6, 0), (9, 0), and (12, 0) with Ncolors = 1, 3, 9.
Larger target structures have broader initial distributions, but all exhibit a high probability of the target state with a small increase in the
number of species for the tiling.

tubules (figure 5), with each pattern having a unique interac-
tion matrix required for assembly. For each pattern, we also
compute the allowed tubule geometries. Interestingly, we find
that one of the three patterns (figure 5(a)) does not give addi-
tional restrictions compared to a single-species tiling. In con-
trast, the other two tilings reduce the available states by half,
albeit with the same restrictions as one another (figure 5(b)).
Note that even though some patterns have the same restric-
tions, all three patterns have different interaction matrices, and
thus there is only one designed ground-state tiling for each
pattern.

As mentioned above, we rationalize the observation that
some tilings restrict the allowed states while others do not

by looking at the primitive vectors of the tilings. For the pat-
tern in figure 5(a), we see that every vertex of the tiling is the
same, meaning that all points in m, n-space are allowed tubule
types. This occurs because the length of its primitive vectors
both match the subunit length. In contrast, the two patterns
in figure 5(b) have two distinct vertices that cannot overlap
with one another on a tubule. Because the two vertex types
appear with equal frequency, each vertex can only bind with
half of the total vertices in the pattern, thereby reducing the
number of accessible states by a factor of two. Additionally,
since the primitive vectors for the patterns in figure 5(b) are not
equal length, the restrictions imposed on the allowed states are
anisotropic. For this pattern, any value of m is allowed, while
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only even values of n are permitted. Depending on whether
or not one wants to more tightly restrict the chirality of the
structure or the available widths, one can adjust the orientation
of the target displacement vector, w, with respect to the two
primitive vectors.

A subtle point about the two patterns in figure 5(b) is that
even though they produce the same restrictions on allowed
states, they require different numbers of specific interactions
to encode their patterns. For example, we see that there are
five and four unique matrix elements for the top and bottom
patterns in figure 5(b), respectively. We hypothesize that reduc-
ing the number of interaction types to restrict a greater num-
ber of states will be an important design criteria for multiple-
species experiments, since there will inevitably be a finite
capacity for specific interactions beyond which undesired
crosstalk between edges becomes non-negligible.

3.4. Finding the minimal number of species required for
high-yield assembly

Now that we understand how a tiling with multiple species
can change the number of accessible states, we explore how
to design a system that targets a single state with a high yield.
As we saw in figure 2(d), the number of off-target states, Ntypes,
increases as the area of fluctuations around the target vertex,
Δw2, increases. To compensate for this effect, we expect that
the required primitive vector length of a tiling should be com-
parable to the fluctuations of the self-limited length scale to
achieve high yield of the target state. Figure 6(a) shows how
a distribution of tubule types relates to the spatial distribu-
tion of allowed states around the target vertex. We see that the
accessible vertices are nearly uniformly distributed around the
target vertex, with a slightly larger variation in the w direction.
Therefore, we expect that tilings that have primitive vectors of
similar lengths will eliminate off-target states most effectively.
Figure 6(b) shows examples of two tilings and their respective
excluded regions. The first pattern shows an isotropic tiling
with the nearest accessible vertices shown connected by the
dotted line. The second pattern shows an extreme case in which
the excluded region is highly anisotropic. In the short direc-
tion, smaller fluctuations would be needed to access another
allowed vertex. Going forward, we restrict ourselves to the use
of isotropic or near-isotropic tilings; the patterns used for the
different numbers of species are shown in figure 6(c).

To see how increasing the number of species, Ncolors affects
the assembly specificity, we perform both simulations and
energy calculations as before. Specifically, we calculate the
number of accessible states for tubules of different target
widths, wtarget, and bending rigidity, which are assembled from
different numbers of subunit species.

We find that the assembly yield of the target state increases
as the number of species increases. Figure 6(d) shows the num-
ber of tubule types that form, N types (left), as well as the proba-
bility of forming the target state, Ptarget (right), as we change the
number of species, rescaled by w2/B. Recalling that the num-
ber of tubule types for a single species, Ntypes, grows as w2/B
(figure 2(e)), we consider the quantity w2/B as the area of the
fluctuations around the target vertex. For isotropic tilings the

primitive vectors have a length that grows as
√

Ncolors, mean-
ing the excluded area around a target vertex will grow linearly
with the number of species. When NcolorsB/w2 ≈ 1 the area
of the disallowed region and the area of fluctuations become
comparable. At this point we observe full specificity in both
Ntypes and Ptarget. Both the energetics and the simulation show
the same scaling.

To clearly illustrate how adding additional species impacts
the tubule distributions, we show examples of three different
target widths for Ncolors = 1, 3, 9 in figure 6(e). As the number
of species is increased there is a reduction in the number of
types of structures that form, with a corresponding increase in
the fraction that form the target state. Note that even though the
specificity of the target is increased, the extent of the off-target
states is not impacted, as seen most clearly in the three-species
case. These results further illustrate that the minimum number
of subunit species to achieve full specificity is proportional to
the size of the fluctuations of the system.

4. Conclusions

In this report, we have shown that multiple species with
specific interactions can be used to reduce the assembly of
off-target structures for cylindrical tubules. As more species
are added to the tiling, the distance between similar vertices
increases, corresponding to an area of disallowed states around
that target vertex. Full specificity of the target can be achieved
when the area of the disallowed region encompasses all off-
target states that would have been accessible due to thermal
fluctuations. In using multiple species, there is a trade-off
between the increase in complexity of the system and the ben-
efit of greater specificity. Therefore, design rules, like the one
we develop here, are essential to program the assembly of self-
limiting structures in as economical a way as possible. An
important note is that while this strategy successfully reduces
nearby states for specific targets, the use of multiple species
also limits the available target states that can be designed. This
idea for how to engineer the free-energy landscape near a target
structure should hold for other types of self-limited assembly
as well.

An aspect of assembly that has not been discussed in this
work is the dynamics of assembly. As the number of sub-
unit species increases, we expect the time for nucleation and
growth to increase significantly. This slowing-down of the
dynamics of assembly places further emphasis on the need
to design the number of unique subunits in as economical
a way as possible. Beyond economical design, other strate-
gies might also be combined with multispecies assembly to
help overcome kinetic bottlenecks. Nature offers one strategy
to improve the target yield without dramatically slowing the
assembly kinetics: seeded nucleation. For example, in vivo,
microtubules—cylindrical cytoskeletal filaments formed from
proteins—assemble with a narrow distribution of diameters
with the help of seeds [43]. Without such a mechanism to
control the initial diameter of the filaments, an array of dif-
ferent tubule structures with varying width and chirality can
be seen [44, 45]. Having seeds allows the system to target
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a specific structure without sacrificing the kinetics. However,
this approach would offer its own set of challenges for syn-
thetic self-assembly with respect to the creation and purity of
templates that are used to seed nucleation.

Aside from controlling the assembly specificity, there are
other interesting directions that can be explored with the tilings
that we have identified. Foremost is the possibility for increas-
ing the addressability of an assembled structure with a tunable
length-scale that is not limited to the particle size or the self-
limited length scale. In the case of subunits made from DNA
origami, we can imagine creating unique addressable sites for
conjugating molecules or other small particles to specific sub-
units within a complex triangular lattice [10, 46, 47]. This
strategy could be a way of patterning structures with recep-
tors with certain biological functions or with nanoparticles to
create materials with unique photonic responses. Similarly, by
leaving out certain species, one could create a user-prescribed
pattern of holes in the final structure, enabling the assembly of
structures with tunable porosity.

Lastly, we have only explored the role of multiple species
in the context of geometrically identical subunits with specific
interactions. In terms of self-limited assemblies, there are other
closed structures that have variable curvature throughout, such
as toroids or helicoids. By engineering a set of allowed inter-
actions between multiple subunits geometries, we could envi-
sion changing curvature or edge length for each component as
well. Specifically, the linear-tilings that we have found (see SI
figure S11 pattern 10-4 as an example) could be used to con-
struct more complex manifolds. Manifolds that have different
topologies from a tubule may require finding new tiling pat-
terns and interaction matrices that come from different design
rules for that surface.

The recent work by Sigl et al [10] provides a promising
pathway towards realizing the assembly strategies presented
in this report. In their work, they made triangular subunits
using DNA origami and used them to assemble icosahedral
shells from mixtures containing as many as three distinct sub-
unit species and five unique interactions. One could imagine
extending the space of shapes used to facilitate their lock-
and-key interactions, as well as adding additional specificity
through DNA hybridization. Using these approaches, mak-
ing experimental systems containing tens of unique subunits
should be feasible. An important aspect to consider going for-
ward is how cross-talk between these numerous interactions
would impact the fidelity of the assembled structures.
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